Fourier Analysis in Convex Geometry

· Mathematical Surveys and Monographs หนังสือเล่มที่ 116 · American Mathematical Soc.
eBook
170
หน้า
คะแนนและรีวิวไม่ได้รับการตรวจสอบยืนยัน  ดูข้อมูลเพิ่มเติม

เกี่ยวกับ eBook เล่มนี้

The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems.

One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the  -dimensional volume of hyperplane sections of the  -dimensional unit cube (it is      for each  ). Another is the Busemann-Petty problem: if   and   are two convex origin-symmetric  -dimensional bodies and the  -dimensional volume of each central hyperplane section of   is less than the  -dimensional volume of the corresponding section of  , is it true that the  -dimensional volume of   is less than the volume of  ? (The answer is positive for   and negative for  .)

The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.

เกี่ยวกับผู้แต่ง

Alexander Koldobsky, University of Missouri, Columbia, MO, USA.

ให้คะแนน eBook นี้

แสดงความเห็นของคุณให้เรารับรู้

ข้อมูลในการอ่าน

สมาร์ทโฟนและแท็บเล็ต
ติดตั้งแอป Google Play Books สำหรับ Android และ iPad/iPhone แอปจะซิงค์โดยอัตโนมัติกับบัญชีของคุณ และช่วยให้คุณอ่านแบบออนไลน์หรือออฟไลน์ได้ทุกที่
แล็ปท็อปและคอมพิวเตอร์
คุณฟังหนังสือเสียงที่ซื้อจาก Google Play โดยใช้เว็บเบราว์เซอร์ในคอมพิวเตอร์ได้
eReader และอุปกรณ์อื่นๆ
หากต้องการอ่านบนอุปกรณ์ e-ink เช่น Kobo eReader คุณจะต้องดาวน์โหลดและโอนไฟล์ไปยังอุปกรณ์ของคุณ โปรดทำตามวิธีการอย่างละเอียดในศูนย์ช่วยเหลือเพื่อโอนไฟล์ไปยัง eReader ที่รองรับ