Fourier Analysis in Convex Geometry

· Mathematical Surveys and Monographs 116. grāmata · American Mathematical Soc.
E-grāmata
170
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems.

One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the  -dimensional volume of hyperplane sections of the  -dimensional unit cube (it is      for each  ). Another is the Busemann-Petty problem: if   and   are two convex origin-symmetric  -dimensional bodies and the  -dimensional volume of each central hyperplane section of   is less than the  -dimensional volume of the corresponding section of  , is it true that the  -dimensional volume of   is less than the volume of  ? (The answer is positive for   and negative for  .)

The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.

Par autoru

Alexander Koldobsky, University of Missouri, Columbia, MO, USA.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.