Fourier Analysis in Convex Geometry

· Mathematical Surveys and Monographs Книга 116 · American Mathematical Soc.
Електронна книга
170
Страници
Оценките и отзивите не са потвърдени  Научете повече

Всичко за тази електронна книга

The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems.

One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the  -dimensional volume of hyperplane sections of the  -dimensional unit cube (it is      for each  ). Another is the Busemann-Petty problem: if   and   are two convex origin-symmetric  -dimensional bodies and the  -dimensional volume of each central hyperplane section of   is less than the  -dimensional volume of the corresponding section of  , is it true that the  -dimensional volume of   is less than the volume of  ? (The answer is positive for   and negative for  .)

The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.

За автора

Alexander Koldobsky, University of Missouri, Columbia, MO, USA.

Оценете тази електронна книга

Кажете ни какво мислите.

Информация за четенето

Смартфони и таблети
Инсталирайте приложението Google Play Книги за Android и iPad/iPhone. То автоматично се синхронизира с профила ви и ви позволява да четете онлайн или офлайн, където и да сте.
Лаптопи и компютри
Можете да слушате закупените от Google Play аудиокниги посредством уеб браузъра на компютъра си.
Електронни четци и други устройства
За да четете на устройства с електронно мастило, като например електронните четци от Kobo, трябва да изтеглите файл и да го прехвърлите на устройството си. Изпълнете подробните инструкции в Помощния център, за да прехвърлите файловете в поддържаните електронни четци.