Foundations of Linear Algebra

· Texts in the Mathematical Sciences Book 11 · Springer Science & Business Media
eBook
237
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

This book is an extensively revised version of my textbook "¥esodot HaAlgebra HaLiniarit" (The Foundations of Linear Algebra) used at many universities in Israel. It is designed for a comprehensive one-year course in linear algebra (112 lecture hours) for mathematics majors. Therefore, I assume that the student already has a certain amount of mathematical background - including set theory, mathematical induction, basic analytic geometry, and elementary calculus - as wellas a modicum of mathematical sophistication. My intention is to provide not only a solid basis in the abstract theory of linear algebra, but also to provide examples of the application of this theory to other branches ofmathematics and computer science. Thus, for example, the introduction of finite fields is dictated by the needs of students studying algebraic coding theory as an immediate followup to their linear algebra studies. Many of the students studying linear algebra either are familiar with the care and feeding of computers before they begin their studies or are simultaneously en rolled in an introductory computer science course. Therefore, consideration of the more computational aspects of linear algebra - such as the solution of systems of linear equations and the calculation of eigenvalues - is delayed until all students are assumed able to write computer programs for this purpose. Beginning with Chap ter VII, there is an implicit assumption that the student has access to a personal computer and knows how to use it.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.