Ferroelectric Materials for Energy Applications

·
· John Wiley & Sons
eBook
384
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Provides a comprehensive overview of the emerging applications of ferroelectric materials in energy harvesting and storage

Conventional ferroelectric materials are normally used in sensors and actuators, memory devices, and field effect transistors, etc. Recent progress in this area showed that ferroelectric materials can harvest energy from multiple sources including mechanical energy, thermal fluctuations, and light. This book gives a complete summary of the novel energy-related applications of ferroelectric materials?and reviews both the recent advances as well as the future perspectives in this field.

Beginning with the fundamentals of ferroelectric materials, Ferroelectric Materials for Energy Applications offers in-depth chapter coverage of: piezoelectric energy generation; ferroelectric photovoltaics; organic-inorganic hybrid perovskites for solar energy conversion; ferroelectric ceramics and thin films in electric energy storage; ferroelectric polymer composites in electric energy storage; pyroelectric energy harvesting; ferroelectrics in electrocaloric cooling; ferroelectric in photocatalysis; and first-principles calculations on ferroelectrics for energy applications.

-Covers a highly application-oriented subject with great potential for energy conversion and storage applications.
-Focused toward a large, interdisciplinary group consisting of material scientists, solid state physicists, engineering scientists, and industrial researchers
-Edited by the "father of integrated ferroelectrics"

Ferroelectric Materials for Energy Applications is an excellent book for researchers working on ferroelectric materials and energy materials, as well as engineers looking to broaden their view of the field.

저자 정보

Haitao Huang, PhD, is Associate Professor in the Department of Applied Physics, Hong Kong Polytechnic University, China. His research includes materials for energy storage and conversion, such as supercapacitors, lithium ion batteries, and dye-sensitized solar cells, and ferroelectric materials.

James F. Scott, PhD, is Professor in the School of Physics and Astronomy and in the School of Chemistry at University of St Andrews, UK. He is an experimental condensed matter physicist with a strong interest in ferroelectric oxides and fluorides.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.