Explosive Instabilities in Mechanics

· Springer Science & Business Media
电子书
197
评分和评价未经验证  了解详情

关于此电子书

The subject of blow-up in a finite time, or at least very rapid growth, of a solution to a partial differential equation has been an area of intense re search activity in mathematics. Some ofthe early techniques and results were discussed in the monograph by Payne (1975) and in my earlier monograph, Straughan (1982). Relatively recent accounts of blow-up work in partial dif ferential equations may be found in the review by Levine (1990) and in the book by Samarskii et al. (1994). It is becoming increasingly clear that very rapid instabilities and, indeed, finite time blow-up are being witnessed also in problems in applied mathematics and mechanics. Also in vogue in the mathematical literature are studies of blow-up in systems of partial differen tial equations, partial differential equations with non-linear convection terms, and systems of partial differential equations which contain convection terms. Such equations are often derived from models of mundane situations in real life. This book is an account of these topics in a selection of areas of applied mathematics which either I have worked in or I find particularly interesting and deem relevant to be included in such an exposition. I believe the results given in Chap. 2 and Sects. 4. 2. 3 and 4. 2. 4 are new. This research was partly supported by a Max Planck Forschungspreis from the Alexander von Humboldt Foundation and the Max Planck Institute.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。