Exercises in Modules and Rings

· Springer Science & Business Media
Carte electronică
414
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The idea of writing this book came roughly at the time of publication of my graduate text Lectures on Modules and Rings, Springer GTM Vol. 189, 1999. Since that time, teaching obligations and intermittent intervention of other projects caused prolonged delays in the work on this volume. Only a lucky break in my schedule in 2006 enabled me to put the finishing touches on the completion of this long overdue book. This book is intended to serve a dual purpose. First, it is designed as a "problem book" for Lectures. As such, it contains the statements and full solutions of the many exercises that appeared in Lectures. Second, this book is also offered as a reference and repository for general information in the theory of modules and rings that may be hard to find in the standard textbooks in the field. As a companion volume to Lectures, this work covers the same math ematical material as its parent work; namely, the part of ring theory that makes substantial use of the notion of modules. The two books thus share the same table of contents, with the first half treating projective, injective, and flat modules, homological and uniform dimensions, and the second half dealing with noncommutative localizations and Goldie's theorems, maximal rings of quotients, Frobenius and quasi-Frobenius rings, conclud ing with Morita's theory of category equivalences and dualities.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.