Essays in Constructive Mathematics: Edition 2

· Springer Nature
Carte electronică
322
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

He [Kronecker] was, in fact, attempting to describe and to initiate a new branch of mathematics, which would contain both number theory and alge braic geometry as special cases.—Andre Weil [62] This book is about mathematics, not the history or philosophy of mathemat ics. Still, history and philosophy were prominent among my motives for writing it, and historical and philosophical issues will be major factors in determining whether it wins acceptance. Most mathematicians prefer constructive methods. Given two proofs of the same statement, one constructive and the other not, most will prefer the constructive proof. The real philosophical disagreement over the role of con structions in mathematics is between those—the majority—who believe that to exclude from mathematics all statements that cannot be proved construc tively would omit far too much, and those of us who believe, on the contrary, that the most interesting parts of mathematics can be dealt with construc tively, and that the greater rigor and precision of mathematics done in that way adds immensely to its value.

Despre autor

Harold M. Edwards [1936–2020] was Professor Emeritus of Mathematics at New York University. His research interests lay in number theory, algebra, and the history and philosophy of mathematics. He authored numerous books, including Riemann’s Zeta Function (1974, 2001) and Fermat’s Last Theorem (1977), for which he received the Leroy P. Steele Prize for mathematical exposition in 1980.

David A. Cox (Contributing Author) is Professor Emeritus of Mathematics in the Department of Mathematics and Statistics of Amherst College. He received the Leroy P. Steele Prize for mathematical exposition in 2016 for his book Ideals, Varieties, and Algorithms, with John Little and Donal O’Shea.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.