Equivariant Cohomology in Algebraic Geometry

·
· Cambridge Studies in Advanced Mathematics Livre 210 · Cambridge University Press
E-book
464
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

Equivariant cohomology has become an indispensable tool in algebraic geometry and in related areas including representation theory, combinatorial and enumerative geometry, and algebraic combinatorics. This text introduces the main ideas of the subject for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics. The first six chapters cover the basics: definitions via finite-dimensional approximation spaces, computations in projective space, and the localization theorem. The rest of the text focuses on examples – toric varieties, Grassmannians, and homogeneous spaces – along with applications to Schubert calculus and degeneracy loci. Prerequisites are kept to a minimum, so that one-semester graduate-level courses in algebraic geometry and topology should be sufficient preparation. Featuring numerous exercises, examples, and material that has not previously appeared in textbook form, this book will be a must-have reference and resource for both students and researchers for years to come.

À propos de l'auteur

David Anderson is Associate Professor at The Ohio State University. He works in combinatorial algebraic geometry and has written over three dozen papers on topics including Schubert calculus, Newton–Okounkov bodies, and equivariant K-theory. In 2020, he received a CAREER Award from the National Science Foundation.

William Fulton is Oscar Zariski Distinguished University Professor Emeritus at the University of Michigan. He is an algebraic geometer, and author or co-author of approximately five dozen papers and a dozen books, including 'Intersection Theory,' which won a Steele Prize from the American Mathematical Society. Fulton is a member of the National Academy of Sciences, and a foreign member of the Royal Swedish Academy of Sciences.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.