Engineering Mathematics - III [JNTU Kakinada]

S. Chand Publishing
4,3
15 resensies
E-boek
821
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

In this book, vector differential calculus is considered, which extends the basic concepts of (ordinary) differential calculus, such as, continuity and differentiability to vector functions in a simple and natural way. The new concepts of gradient, divergence and curl are introduced. Line, surface and volume integrals which occur frequently in connection with physical and engineering problems are defined. Three important vector integral theorems, Gauss divergence theorem, Green’s theorem in plane and Stokes theorem are discussed. The idea of Laplace transform to develop some useful results has been introduced also demonstrated how the Laplace transform technique is used in solving a class of problems in differential equations. Fourier series is an infinite series representation of a periodic function in terms of sines and cosines of an angle and its multiples. How Fourier series is useful to solve ordinary and partial differential equations particularly with periodic functions appearing as non-homogeneous terms has been discussed. This book comprises previous question papers problems at appropriate places and also previous GATE questions at the end of each chapter for the benefit of the students.

Graderings en resensies

4,3
15 resensies

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.