Eisenstein Series and Applications

· ·
· Progress in Mathematics Livre 258 · Springer Science & Business Media
Ebook
314
Pages
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas that are not usually interacting with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series.

The central theme of the exposition focuses on the common structural properties of Eisenstein series occurring in many related applications that have arisen in several recent developments in arithmetic: Arakelov intersection theory on Shimura varieties, special values of L-functions and Iwasawa theory, and equidistribution of rational/integer points on homogeneous varieties. Key questions that are considered include: Is it possible to identify a class of Eisenstein series whose Fourier coefficients (resp. special values) encode significant arithmetic information? Do such series fit into p-adic families? Are the Eisenstein series that arise in counting problems of this type?

Contributors include: B. Brubaker, D. Bump, J. Franke, S. Friedberg, W.T. Gan, P. Garrett, M. Harris, D. Jiang, S.S. Kudla, E. Lapid, K. Prasanna, A. Raghuram, F. Shahidi, R. Takloo-Bighash

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.