Eigenvalues, Multiplicities and Graphs

·
· Cambridge Tracts in Mathematics 211-kitob · Cambridge University Press
E-kitob
315
Sahifalar soni
Reytinglar va sharhlar tasdiqlanmagan  Batafsil

Bu e-kitob haqida

The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject.

Muallif haqida

Charles R. Johnson is Class of 1961 Professor of Mathematics at the College of William and Mary, Virginia. He is the recognized expert in the interplay between linear algebra and combinatorics, as well as many parts of matrix analysis. He is coauthor of Matrix Analysis (Cambridge, 2012), Topics in Matrix Analysis (Cambridge, 2010), both with Roger Horn, and Totally Nonnegative Matrices (2011, with Shaun Fallat).

Carlos M. Saiago is Assistant Professor of Mathematics at Universidade Nova de Lisboa, Portugal, and is the author of fifteen papers on eigenvalues, multiplicities, and graphs.

Bu e-kitobni baholang

Fikringizni bildiring.

Qayerda o‘qiladi

Smartfonlar va planshetlar
Android va iPad/iPhone uchun mo‘ljallangan Google Play Kitoblar ilovasini o‘rnating. U hisobingiz bilan avtomatik tazrda sinxronlanadi va hatto oflayn rejimda ham kitob o‘qish imkonini beradi.
Noutbuklar va kompyuterlar
Google Play orqali sotib olingan audiokitoblarni brauzer yordamida tinglash mumkin.
Kitob o‘qish uchun mo‘ljallangan qurilmalar
Kitoblarni Kobo e-riderlar kabi e-siyoh qurilmalarida oʻqish uchun faylni yuklab olish va qurilmaga koʻchirish kerak. Fayllarni e-riderlarga koʻchirish haqida batafsil axborotni Yordam markazidan olishingiz mumkin.