Eigenvalues, Multiplicities and Graphs

·
· Cambridge Tracts in Mathematics Część 211 · Cambridge University Press
E-book
315
Strony
Oceny i opinie nie są weryfikowane. Więcej informacji

Informacje o e-booku

The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject.

O autorze

Charles R. Johnson is Class of 1961 Professor of Mathematics at the College of William and Mary, Virginia. He is the recognized expert in the interplay between linear algebra and combinatorics, as well as many parts of matrix analysis. He is coauthor of Matrix Analysis (Cambridge, 2012), Topics in Matrix Analysis (Cambridge, 2010), both with Roger Horn, and Totally Nonnegative Matrices (2011, with Shaun Fallat).

Carlos M. Saiago is Assistant Professor of Mathematics at Universidade Nova de Lisboa, Portugal, and is the author of fifteen papers on eigenvalues, multiplicities, and graphs.

Oceń tego e-booka

Podziel się z nami swoją opinią.

Informacje o czytaniu

Smartfony i tablety
Zainstaluj aplikację Książki Google Play na AndroidaiPada/iPhone'a. Synchronizuje się ona automatycznie z kontem i pozwala na czytanie w dowolnym miejscu, w trybie online i offline.
Laptopy i komputery
Audiobooków kupionych w Google Play możesz słuchać w przeglądarce internetowej na komputerze.
Czytniki e-booków i inne urządzenia
Aby czytać na e-papierze, na czytnikach takich jak Kobo, musisz pobrać plik i przesłać go na swoje urządzenie. Aby przesłać pliki na obsługiwany czytnik, postępuj zgodnie ze szczegółowymi instrukcjami z Centrum pomocy.