Dynamical Systems-Based Soil Mechanics

· CRC Press
電子書
158
符合資格
評分和評論未經驗證  瞭解詳情

關於本電子書

This book is a short yet rigorous course on a new paradigm in soil mechanics, one that holds that soil deformation occurs as a simple friction-based Poisson process in which soil particles move to their final position at random shear strains. It originates from work by Casagrande’s soil mechanics group at Harvard University that found that an aggregate of soil particles when sheared reaches a "steady-state" condition, a finding in line with the thermodynamics of dissipative systems. The book unpacks this new paradigm as it applies to soils. The theory explains fundamental, ubiquitous soil behaviors and relationships used in soils engineering daily thousands of times across the world, but whose material bases so far have been unknown. These include for example, why for one-dimensional consolidation, the e-log σ line is linear, and why Cα/Cc is a constant for a given soil. The subtext of the book is that with this paradigm, the scientific method of trying to falsify hypotheses fully drives advances in the field, i.e., that soil mechanics now strictly qualifies as a science that, in turn, informs geotechnical engineering.

The audience for the book is senior undergraduates, graduate students, academics, and researchers as well as industry professionals, particularly geotechnical engineers. It will also be useful to structural engineers, highway engineers, military engineers, persons in the construction industry, as well as planetary scientists. Because its fundamental findings hold for any mass of particles like soils, the theory applies not just to soils, but also to powders, grains etc. so long as these are under pseudo-static (no inertial effects) conditions.

關於作者

Paul graduated from a five year undergraduate in Civil Engineering at Engineering College, University of Madras, Madras, India in 1983. He then went on to graduate work in soil mechanics/geotechnical engineering at Purdue University, Indiana and after that, at the Massachusetts Institute of Technology, Massachusetts. He finished a Masters in Applied Mathematics at the University of Massachusetts (Lowell) in 2010, and in Fall 2013, obtained his Ph.D.Paul is registered Professional Engineer (PE) in the State of Massachusetts. "Steady states are ubiquitous in nature and a mathematical framework (loosely called "dynamical systems theory") exists to describe systems with a steady state. The Great Red Spot on Jupiter is an example of a steady state generated by a dynamical system; mathematicians have extensively studied such dynamical systems. In 1971, Steve Poulos at Harvard first described the steady-state condition in soils. Based on this I was able to show that soil shear can be described as a "dynamical system" whose underlying basis is nothing but Poisson process based simple friction. These basic findings (steady-state, dynamical systems, Poisson process based simple friction) mark the advent of a new paradigm for describing soil deformation that is at once both simple and powerful. I call this new paradigm Dynamical Systems Soil Mechanics (DSSM for short). It is the only theory that predicts key relationships observed in the empirical evidence from decades of soil tests, relationships which hitherto, have simply been taken as "given.""

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。