Displaying Modal Logic

· Trends in Logic Βιβλίο 3 · Springer Science & Business Media
ebook
252
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

The present monograph is a slightly revised version of my Habilitations schrift Proof-theoretic Aspects of Intensional and Non-Classical Logics, successfully defended at Leipzig University, November 1997. It collects work on proof systems for modal and constructive logics I have done over the last few years. The main concern is display logic, a certain refinement of Gentzen's sequent calculus developed by Nuel D. Belnap. This book is far from offering a comprehensive presentation of generalized sequent systems for modal logics broadly conceived. The proof-theory of non-classical logics is a rapidly developing field, and even the generalizations of the ordinary notion of sequent listed in Chapter 1 can hardly be presented in great detail within a single volume. In addition to further investigating the various approaches toward generalized Gentzen systems, it is important to compare them and to discuss their relative advantages and disadvantages. An initial attempt at bringing together work on different kinds of proof systems for modal logics has been made in [188]. Another step in the same direction is [196]. Since Chapter 1 contains introductory considerations and, moreover, every remaining chapter begins with some surveying or summarizing remarks, in this preface I shall only emphasize a relation to philosophy that is important to me, register the sources of papers that have entered this book in some form or another, and acknowledge advice and support.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.