Diskrete Mathematik: Ausgabe 3

· Springer-Verlag
Livro eletrónico
316
Páginas
As classificações e as críticas não são validadas  Saiba mais

Acerca deste livro eletrónico

Vor 50 Jahren gab es den Begriff "Diskrete Mathematik" nicht, und er ist auch heute im deutschen Sprachraum keineswegs gebräuchlich. Vorlesungen dazu werden nicht überall und schon gar nicht mit einem einheitlichen Themenkatalog angeboten (im Gegensatz zum Beispiel zu den USA, wo sie seit langem einen festen Platz haben). Die Mathematiker verstehen unter Diskreter Mathematik meist Kombinatorik oder Graphentheorie, die Informatiker Diskrete Strukturen oder Boolesche Algebren. Das Hauptanliegen dieses Buches ist daher, solch einen Themenkatalog zu präsentieren, der alle Grundlagen für ein weiterführendes Studium enthält. Die Diskrete Mathematik beschäftigt sich vor allem mit endlichen Mengen. Was kann man in endlichen Mengen studieren? Als allererstes kann man sie abzählen, dies ist das klassische Thema der Kombinatorik - in Teil I werden wir die wich tigsten Ideen und Methoden zur Abzählung kennenlernen. Auf endlichen Mengen ist je nach Aufgabenstellung meist eine einfache Struktur in Form von Relationen gegeben, von denen die anwendungsreichsten die Graphen sind. Diese Aspekte fas sen wir in Teil II unter dem Titel Graphen und Algorithmen zusammen. Und schließlich existiert auf endlichen Mengen oft eine algebraische Struktur (oder man kann eine solche auf natürliche Weise erklären). Algebraische Systeme sind der Inhalt von Teil III. Diese drei Gesichtspunkte bilden den roten Faden des Buches. Ein weiterer Aspekt, der die Darstellung durchgehend prägt, betrifft den Begriff der Optimierung.

Acerca do autor

Prof. Dr. Martin Aigner ist an der FU Berlin tätig.

Classifique este livro eletrónico

Dê-nos a sua opinião.

Informações de leitura

Smartphones e tablets
Instale a app Google Play Livros para Android e iPad/iPhone. A aplicação é sincronizada automaticamente com a sua conta e permite-lhe ler online ou offline, onde quer que esteja.
Portáteis e computadores
Pode ouvir audiolivros comprados no Google Play através do navegador de Internet do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos e-ink, como e-readers Kobo, tem de transferir um ficheiro e movê-lo para o seu dispositivo. Siga as instruções detalhadas do Centro de Ajuda para transferir os ficheiros para os e-readers suportados.