Differential Geometry of Varieties with Degenerate Gauss Maps

·
· Springer Science & Business Media
E-kitab
255
Səhifələr
Reytinqlər və rəylər doğrulanmır  Ətraflı Məlumat

Bu e-kitab haqqında

In this book the authors study the differential geometry of varieties with degenerate Gauss maps. They use the main methods of differential geometry, namely, the methods of moving frames and exterior differential forms as well as tensor methods. By means of these methods, the authors discover the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, find focal images and construct a classification of the varieties with degenerate Gauss maps.

The authors introduce the above mentioned methods and apply them to a series of concrete problems arising in the theory of varieties with degenerate Gauss maps. What makes this book unique is the authors’ use of a systematic application of methods of projective differential geometry along with methods of the classical algebraic geometry for studying varieties with degenerate Gauss maps.

This book is intended for researchers and graduate students interested in projective differential geometry and algebraic geometry and their applications. It can be used as a text for advanced undergraduate and graduate students.

Each author has published over 100 papers and they have each written a number of books, including Conformal Differential Geometry and Its Generalizations (Wiley 1996), Projective Differential Geometry of Submanifolds (North-Holland 1993), and Introductory Linear Algebra (Prentice-Hall 1972), which were written by them jointly.

Bu e-kitabı qiymətləndirin

Fikirlərinizi bizə deyin

Məlumat oxunur

Smartfonlar və planşetlər
AndroidiPad/iPhone üçün Google Play Kitablar tətbiqini quraşdırın. Bu hesabınızla avtomatik sinxronlaşır və harada olmağınızdan asılı olmayaraq onlayn və oflayn rejimdə oxumanıza imkan yaradır.
Noutbuklar və kompüterlər
Kompüterinizin veb brauzerini istifadə etməklə Google Play'də alınmış audio kitabları dinləyə bilərsiniz.
eReader'lər və digər cihazlar
Kobo eReaders kimi e-mürəkkəb cihazlarında oxumaq üçün faylı endirməli və onu cihazınıza köçürməlisiniz. Faylları dəstəklənən eReader'lərə köçürmək üçün ətraflı Yardım Mərkəzi təlimatlarını izləyin.