Designs and Graphs

· ·
· Topics in Discrete Mathematics Cartea 4 · Elsevier
Carte electronică
426
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

In 1988, the news of Egmont Köhler's untimely death at the age of 55reached his friends and colleagues. It was widely felt that a lastingmemorial tribute should be organized. The result is the present volume,containing forty-two articles, mostly in combinatorial design theory andgraph theory, and all in memory of Egmont Köhler. Designs and graphswere his areas of particular interest; he will long be remembered for hisresearch on cyclic designs, Skolem sequences, t-designs and theOberwolfach problem. Professors Lenz and Ringel give a detailedappreciation of Köhler's research in the first article of thisvolume.

There is, however, one aspect of Egmont Köhler's biographythat merits special attention. Before taking up the study of mathematics atthe age of 31, he had completed training as a musician (studying bothcomposition and violoncello at the Musikhochschule in Berlin), and workedas a cellist in a symphony orchestra for some years. This accounts for hisinterest in the combinatorial aspects of music. His work and lectures inthis direction had begun to attract the interest of many musicians, and hehad commenced work on a book on mathematical aspects of musical theory. Itis tragic indeed that his early death prevented the completion of his work;the surviving paper on the classification and complexity of chordsindicates the loss that his death meant to the area, as he was almostuniquely qualified to bring mathematics and music together, being aprofessional in both fields.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.