Deformation Theory

· Graduate Texts in Mathematics Llibre 257 · Springer Science & Business Media
4,0
2 ressenyes
Llibre electrònic
234
Pàgines
No es verifiquen les puntuacions ni les ressenyes Més informació

Sobre aquest llibre

In the fall semester of 1979 I gave a course on deformation theory at Berkeley. My goal was to understand completely Grothendieck’s local study of the Hilbert scheme using the cohomology of the normal bundle to characterize the Zariski tangent space and the obstructions to deformations. At the same timeIstartedwritinglecturenotesforthecourse.However,thewritingproject soon foundered as the subject became more intricate, and the result was no more than ?ve of a projected thirteen sections, corresponding roughly to s- tions 1, 2, 3, 5, 6 of the present book. These handwritten notes circulated quietly for many years until David Eisenbud urged me to complete them and at the same time (without consu- ing me) mentioned to an editor at Springer, “You know Robin has these notes on deformation theory, which could easily become a book.” When asked by Springer if I would write such a book, I immediately refused, since I was then planning another book on space curves. But on second thought, I decided this was,afterall,aworthyproject,andthatbywritingImight?nallyunderstand the subject myself. So during 2004 I expanded the old notes into a rough draft, which I used to teach a course during the spring semester of 2005. Those notes, rewritten once more, with the addition of exercises, form the book you are now reading. Mygoalinthisbookistointroducethemainideasofdeformationtheoryin algebraicgeometryandtoillustratetheiruseinanumberoftypicalsituations.

Puntuacions i ressenyes

4,0
2 ressenyes

Puntua aquest llibre electrònic

Dona'ns la teva opinió.

Informació de lectura

Telèfons intel·ligents i tauletes
Instal·la l'aplicació Google Play Llibres per a Android i per a iPad i iPhone. Aquesta aplicació se sincronitza automàticament amb el compte i et permet llegir llibres en línia o sense connexió a qualsevol lloc.
Ordinadors portàtils i ordinadors de taula
Pots escoltar els audiollibres que has comprat a Google Play amb el navegador web de l'ordinador.
Lectors de llibres electrònics i altres dispositius
Per llegir en dispositius de tinta electrònica, com ara lectors de llibres electrònics Kobo, hauràs de baixar un fitxer i transferir-lo al dispositiu. Segueix les instruccions detallades del Centre d'ajuda per transferir els fitxers a lectors de llibres electrònics compatibles.