Deformation Theory

· Graduate Texts in Mathematics الكتاب 257 · Springer Science & Business Media
4.0
مراجعتان (2)
كتاب إلكتروني
234
صفحة
لم يتم التحقّق من التقييمات والمراجعات.  مزيد من المعلومات

معلومات عن هذا الكتاب الإلكتروني

In the fall semester of 1979 I gave a course on deformation theory at Berkeley. My goal was to understand completely Grothendieck’s local study of the Hilbert scheme using the cohomology of the normal bundle to characterize the Zariski tangent space and the obstructions to deformations. At the same timeIstartedwritinglecturenotesforthecourse.However,thewritingproject soon foundered as the subject became more intricate, and the result was no more than ?ve of a projected thirteen sections, corresponding roughly to s- tions 1, 2, 3, 5, 6 of the present book. These handwritten notes circulated quietly for many years until David Eisenbud urged me to complete them and at the same time (without consu- ing me) mentioned to an editor at Springer, “You know Robin has these notes on deformation theory, which could easily become a book.” When asked by Springer if I would write such a book, I immediately refused, since I was then planning another book on space curves. But on second thought, I decided this was,afterall,aworthyproject,andthatbywritingImight?nallyunderstand the subject myself. So during 2004 I expanded the old notes into a rough draft, which I used to teach a course during the spring semester of 2005. Those notes, rewritten once more, with the addition of exercises, form the book you are now reading. Mygoalinthisbookistointroducethemainideasofdeformationtheoryin algebraicgeometryandtoillustratetheiruseinanumberoftypicalsituations.

التقييمات والتعليقات

4.0
مراجعتان (2)

تقييم هذا الكتاب الإلكتروني

أخبرنا ما هو رأيك.

معلومات القراءة

الهواتف الذكية والأجهزة اللوحية
ينبغي تثبيت تطبيق كتب Google Play لنظام التشغيل Android وiPad/iPhone. يعمل هذا التطبيق على إجراء مزامنة تلقائية مع حسابك ويتيح لك القراءة أثناء الاتصال بالإنترنت أو بلا اتصال بالإنترنت أينما كنت.
أجهزة الكمبيوتر المحمول وأجهزة الكمبيوتر
يمكنك الاستماع إلى الكتب المسموعة التي تم شراؤها على Google Play باستخدام متصفح الويب على جهاز الكمبيوتر.
أجهزة القراءة الإلكترونية والأجهزة الأخرى
للقراءة على أجهزة الحبر الإلكتروني، مثل أجهزة القارئ الإلكتروني Kobo، عليك تنزيل ملف ونقله إلى جهازك. يُرجى اتّباع التعليمات المفصّلة في مركز المساعدة لتتمكّن من نقل الملفات إلى أجهزة القارئ الإلكتروني المتوافقة.