Deformation Theory

· Graduate Texts in Mathematics Boek 257 · Springer Science & Business Media
4,0
2 resensies
E-boek
234
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

In the fall semester of 1979 I gave a course on deformation theory at Berkeley. My goal was to understand completely Grothendieck’s local study of the Hilbert scheme using the cohomology of the normal bundle to characterize the Zariski tangent space and the obstructions to deformations. At the same timeIstartedwritinglecturenotesforthecourse.However,thewritingproject soon foundered as the subject became more intricate, and the result was no more than ?ve of a projected thirteen sections, corresponding roughly to s- tions 1, 2, 3, 5, 6 of the present book. These handwritten notes circulated quietly for many years until David Eisenbud urged me to complete them and at the same time (without consu- ing me) mentioned to an editor at Springer, “You know Robin has these notes on deformation theory, which could easily become a book.” When asked by Springer if I would write such a book, I immediately refused, since I was then planning another book on space curves. But on second thought, I decided this was,afterall,aworthyproject,andthatbywritingImight?nallyunderstand the subject myself. So during 2004 I expanded the old notes into a rough draft, which I used to teach a course during the spring semester of 2005. Those notes, rewritten once more, with the addition of exercises, form the book you are now reading. Mygoalinthisbookistointroducethemainideasofdeformationtheoryin algebraicgeometryandtoillustratetheiruseinanumberoftypicalsituations.

Graderings en resensies

4,0
2 resensies

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.