Deep Learning in Solar Astronomy

· ·
· Springer Nature
eBook
92
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The volume of data being collected in solar astronomy has exponentially increased over the past decade and we will be entering the age of petabyte solar data. Deep learning has been an invaluable tool exploited to efficiently extract key information from the massive solar observation data, to solve the tasks of data archiving/classification, object detection and recognition.

Astronomical study starts with imaging from recorded raw data, followed by image processing, such as image reconstruction, inpainting and generation, to enhance imaging quality. We study deep learning for solar image processing. First, image deconvolution is investigated for synthesis aperture imaging. Second, image inpainting is explored to repair over-saturated solar image due to light intensity beyond threshold of optical lens. Third, image translation among UV/EUV observation of the chromosphere/corona, Ha observation of the chromosphere and magnetogram of the photosphere is realized by using GAN, exhibiting powerful image domain transfer ability among multiple wavebands and different observation devices. It can compensate the lack of observation time or waveband. In addition, time series model, e.g., LSTM, is exploited to forecast solar burst and solar activity indices.

This book presents a comprehensive overview of the deep learning applications in solar astronomy. It is suitable for the students and young researchers who are major in astronomy and computer science, especially interdisciplinary research of them.

저자 정보

Prof. Long Xu received his Ph.D. degree from the Institute of Computing Technology, Chinese Academy of Sciences (CAS) in 2009. He was selected into the 100-Talents Plan of CAS in 2014. From 2014 to 2022, he was with the National Astronomical Observatories, CAS. He is currently with both National Space Science Center, CAS and Peng Cheng Laboratory. His research interests include image/video processing, solar radio astronomy, wavelet, machine learning, and computer vision. He has published more than 100 academic papers, and a book “Visual quality assessment by machine learning” with Springer in 2015.

Prof. Yihua Yan received his Ph.D. degree from the Dalian University of Technology in 1990. He was a Foreign Research Fellow with the NAOJ (Japan) from 1995 to 1996, and an Alexander von Humboldt Fellow with the Astronomical Institute, Wurzburg University, Germany, from 1996 to 1997. He was the President of IAU Division E: Sun and Heliosphere from 2015 to 2018. He was the Director of the CAS Key Laboratory of Solar Activity (2008-2019), and the Director of Solar Physics Division (2013-2021), at NAOC. He is currently a Professor and a Chief Scientist, National Space Science Center, Chinese Academy of Sciences.

Dr. Xin Huang received the Ph.D. degree from Harbin Institute of Technology in 2010. He was an associate professor at Solar Activity Prediction Center, NAOC from 2013. Now, he is with the Space Environment Prediction Center, National Space Science Center, Chinese Academy of Sciences. His research interests include data mining, image processing and short-term solar activity forecasting. He has published more than 20 academic papers, including one of the top 1% most cited papers in IOP Publishing’s astrophysics journals, published over the period of 2018-2020.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.