Data Exfiltration Threats and Prevention Techniques: Machine Learning and Memory-Based Data Security

· · ·
· John Wiley & Sons
eBook
288
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

DATA EXFILTRATION THREATS AND PREVENTION TECHNIQUES

Comprehensive resource covering threat prevention techniques for data exfiltration and applying machine learning applications to aid in identification and prevention

Data Exfiltration Threats and Prevention Techniques provides readers the knowledge needed to prevent and protect from malware attacks by introducing existing and recently developed methods in malware protection using AI, memory forensic, and pattern matching, presenting various data exfiltration attack vectors and advanced memory-based data leakage detection, and discussing ways in which machine learning methods have a positive impact on malware detection.

Providing detailed descriptions of the recent advances in data exfiltration detection methods and technologies, the authors also discuss details of data breach countermeasures and attack scenarios to show how the reader may identify a potential cyber attack in the real world.

Composed of eight chapters, this book presents a better understanding of the core issues related to the cyber-attacks as well as the recent methods that have been developed in the field.

In Data Exfiltration Threats and Prevention Techniques, readers can expect to find detailed information on:

  • Sensitive data classification, covering text pre-processing, supervised text classification, automated text clustering, and other sensitive text detection approaches
  • Supervised machine learning technologies for intrusion detection systems, covering taxonomy and benchmarking of supervised machine learning techniques
  • Behavior-based malware detection using API-call sequences, covering API-call extraction techniques and detecting data stealing behavior based on API-call sequences
  • Memory-based sensitive data monitoring for real-time data exfiltration detection and advanced time delay data exfiltration attack and detection

Aimed at professionals and students alike, Data Exfiltration Threats and Prevention Techniques highlights a range of machine learning methods that can be used to detect potential data theft and identifies research gaps and the potential to make change in the future as technology continues to grow.

저자 정보

Zahir Tari is Professor at RMIT and Research Director of the RMIT Centre of Cyber Security Research and Innovation.

Nasrin Sohrabi received a PhD in Computer Science from RMIT University, Australia. She is a Postdoctoral Research Fellow in Cloud, Systems and Security discipline, School of Computing Technologies, RMIT University and a core member of the RMIT Centre of Cyber Security Research and Innovation (CCSRI). She has several publications in highly ranked conferences and journals, including ICDE, IEEE Transactions on Services Computings, ACM Computing surveys, IEEE Transactions on Transportation systems, IEEE Transactions on Smart Grids.

Yasaman Samadi is a PhD student in Computer Science at RMIT University, Australia and a researcher in Quantum Cybersecurity. Yasaman has a Master’s in Computer Architecture and worked as a quantum engineer at QBee.

Jakapan Suaboot received his PhD in Cybersecurity from RMIT, Australia. He previously worked as a Lecturer for the Department of Computer Engineering from Prince of Songkla University, Phuket, Thailand.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.

Zahir Tari 작가의 책 더보기

비슷한 eBook