Data Exfiltration Threats and Prevention Techniques: Machine Learning and Memory-Based Data Security

· · ·
· John Wiley & Sons
電子書籍
288
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

DATA EXFILTRATION THREATS AND PREVENTION TECHNIQUES

Comprehensive resource covering threat prevention techniques for data exfiltration and applying machine learning applications to aid in identification and prevention

Data Exfiltration Threats and Prevention Techniques provides readers the knowledge needed to prevent and protect from malware attacks by introducing existing and recently developed methods in malware protection using AI, memory forensic, and pattern matching, presenting various data exfiltration attack vectors and advanced memory-based data leakage detection, and discussing ways in which machine learning methods have a positive impact on malware detection.

Providing detailed descriptions of the recent advances in data exfiltration detection methods and technologies, the authors also discuss details of data breach countermeasures and attack scenarios to show how the reader may identify a potential cyber attack in the real world.

Composed of eight chapters, this book presents a better understanding of the core issues related to the cyber-attacks as well as the recent methods that have been developed in the field.

In Data Exfiltration Threats and Prevention Techniques, readers can expect to find detailed information on:

  • Sensitive data classification, covering text pre-processing, supervised text classification, automated text clustering, and other sensitive text detection approaches
  • Supervised machine learning technologies for intrusion detection systems, covering taxonomy and benchmarking of supervised machine learning techniques
  • Behavior-based malware detection using API-call sequences, covering API-call extraction techniques and detecting data stealing behavior based on API-call sequences
  • Memory-based sensitive data monitoring for real-time data exfiltration detection and advanced time delay data exfiltration attack and detection

Aimed at professionals and students alike, Data Exfiltration Threats and Prevention Techniques highlights a range of machine learning methods that can be used to detect potential data theft and identifies research gaps and the potential to make change in the future as technology continues to grow.

著者について

Zahir Tari is Professor at RMIT and Research Director of the RMIT Centre of Cyber Security Research and Innovation.

Nasrin Sohrabi received a PhD in Computer Science from RMIT University, Australia. She is a Postdoctoral Research Fellow in Cloud, Systems and Security discipline, School of Computing Technologies, RMIT University and a core member of the RMIT Centre of Cyber Security Research and Innovation (CCSRI). She has several publications in highly ranked conferences and journals, including ICDE, IEEE Transactions on Services Computings, ACM Computing surveys, IEEE Transactions on Transportation systems, IEEE Transactions on Smart Grids.

Yasaman Samadi is a PhD student in Computer Science at RMIT University, Australia and a researcher in Quantum Cybersecurity. Yasaman has a Master’s in Computer Architecture and worked as a quantum engineer at QBee.

Jakapan Suaboot received his PhD in Cybersecurity from RMIT, Australia. He previously worked as a Lecturer for the Department of Computer Engineering from Prince of Songkla University, Phuket, Thailand.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。

Zahir Tari のその他の書籍

類似の電子書籍