Convolution Equations and Singular Integral Operators: Selected Papers

· ·
· Operator Theory: Advances and Applications Cartea 206 · Springer Science & Business Media
Carte electronică
240
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This book consists of translations into English of several pioneering papers in the areas of discrete and continuous convolution operators and on the theory of singular integral operators published originally in Russian. The papers were wr- ten more than thirty years ago, but time showed their importance and growing in?uence in pure and applied mathematics and engineering. The book is divided into two parts. The ?rst ?ve papers, written by I. Gohberg and G. Heinig, form the ?rst part. They are related to the inversion of ?nite block Toeplitz matrices and their continuous analogs (direct and inverse problems) and the theory of discrete and continuous resultants. The second part consists of eight papers by I. Gohberg and N. Krupnik. They are devoted to the theory of one dimensional singular integral operators with discontinuous co- cients on various spaces. Special attention is paid to localization theory, structure of the symbol, and equations with shifts. ThisbookgivesanEnglishspeakingreaderauniqueopportunitytogetfam- iarized with groundbreaking work on the theory of Toepliz matrices and singular integral operators which by now have become classical. In the process of the preparation of the book the translator and the editors took care of several misprints and unessential misstatements. The editors would like to thank the translator A. Karlovich for the thorough job he has done. Our work on this book was started when Israel Gohberg was still alive. We see this book as our tribute to a great mathematician.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.

În continuarea seriei

Mai multe de la Leonid Lerer

Cărți electronice similare