Convexity and Optimization in Rn

· John Wiley & Sons
5,0
1 рецензија
Е-книга
280
Страници
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

A comprehensive introduction to convexity and optimization inRn

This book presents the mathematics of finite dimensionalconstrained optimization problems. It provides a basis for thefurther mathematical study of convexity, of more generaloptimization problems, and of numerical algorithms for the solutionof finite dimensional optimization problems. For readers who do nothave the requisite background in real analysis, the author providesa chapter covering this material. The text features abundantexercises and problems designed to lead the reader to a fundamentalunderstanding of the material.

Convexity and Optimization in Rn provides detailed discussionof:
* Requisite topics in real analysis
* Convex sets
* Convex functions
* Optimization problems
* Convex programming and duality
* The simplex method

A detailed bibliography is included for further study and an indexoffers quick reference. Suitable as a text for both graduate andundergraduate students in mathematics and engineering, thisaccessible text is written from extensively class-tested notes.

Оцени и рецензии

5,0
1 рецензија

За авторот

LEONARD D. BERKOVITZ, PhD, is Professor of Mathematics at Purdue University. He previously worked at the RAND Corporation and has served on the editorial boards of several journals, including terms as Managing Editor of the SIAM Journal on Control and as a member of the Editorial Committee of Mathematical Reviews.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.