Convexity and Optimization in Rn

· John Wiley & Sons
5,0
1 recensione
Ebook
280
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

A comprehensive introduction to convexity and optimization inRn

This book presents the mathematics of finite dimensionalconstrained optimization problems. It provides a basis for thefurther mathematical study of convexity, of more generaloptimization problems, and of numerical algorithms for the solutionof finite dimensional optimization problems. For readers who do nothave the requisite background in real analysis, the author providesa chapter covering this material. The text features abundantexercises and problems designed to lead the reader to a fundamentalunderstanding of the material.

Convexity and Optimization in Rn provides detailed discussionof:
* Requisite topics in real analysis
* Convex sets
* Convex functions
* Optimization problems
* Convex programming and duality
* The simplex method

A detailed bibliography is included for further study and an indexoffers quick reference. Suitable as a text for both graduate andundergraduate students in mathematics and engineering, thisaccessible text is written from extensively class-tested notes.

Valutazioni e recensioni

5,0
1 recensione

Informazioni sull'autore

LEONARD D. BERKOVITZ, PhD, is Professor of Mathematics at Purdue University. He previously worked at the RAND Corporation and has served on the editorial boards of several journals, including terms as Managing Editor of the SIAM Journal on Control and as a member of the Editorial Committee of Mathematical Reviews.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.