Constructive Fractional Analysis with Applications

· Studies in Systems, Decision and Control Book 362 · Springer Nature
Ebook
522
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book includes constructive approximation theory; it presents ordinary and fractional approximations by positive sublinear operators, and high order approximation by multivariate generalized Picard, Gauss–Weierstrass, Poisson–Cauchy and trigonometric singular integrals. Constructive and Computational Fractional Analysis recently is more and more in the center of mathematics because of their great applications in the real world. In this book, all presented is original work by the author given at a very general level to cover a maximum number of cases in various applications. The author applies generalized fractional differentiation techniques of Riemann–Liouville, Caputo and Canavati types and of fractional variable order to various kinds of inequalities such as of Opial, Hardy, Hilbert–Pachpatte and on the spherical shell. He continues with E. R. Love left- and right-side fractional integral inequalities. They follow fractional Landau inequalities, of left and right sides, univariate and multivariate, including ones for Semigroups. These are developed to all possible directions, and right-side multivariate fractional Taylor formulae are proven for the purpose. It continues with several Gronwall fractional inequalities of variable order. This book results are expected to find applications in many areas of pure and applied mathematics. As such this book is suitable for researchers, graduate students and seminars of the above disciplines, also to be in all science and engineering libraries.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.

Continue the series

More by George A. Anastassiou

Similar ebooks