Computational and Statistical Approaches to Genomics

·
· Springer Science & Business Media
E-bog
329
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

At the beginning of the post-sequencing era, biology must now work with the enormous amounts of quantitative data being amassed and must render complex problems in mathematical terms, with all of the computational effort that entails. This phenomenon is perhaps best exemplified by the interdisciplinary scientific activity caused by the advent of high-throughput cDNA microarray technology, which facilitates large-scale surveys of gene expression. Biologists must now work together with engineers, statisticians, computer scientists, and other specialists, in order to attain a holistic understanding of the complex relationship between genes within the genome and uncover genetic function and regulation.
Computational and Statistical Genomics aims to help researchers deal with current genomic challenges. Topics covered include:

  • overviews of the role of supercomputers in genomics research, the existing challenges and directions in image processing for microarray technology, and web-based tools for microarray data analysis;
  • approaches to the global modeling and analysis of gene regulatory networks and transcriptional control, using methods, theories, and tools from signal processing, machine learning, information theory, and control theory;
  • state-of-the-art tools in Boolean function theory, time-frequency analysis, pattern recognition, and unsupervised learning, applied to cancer classification, identification of biologically active sites, and visualization of gene expression data;
  • crucial issues associated with statistical analysis of microarray data, statistics and stochastic analysis of gene expression levels in a single cell, statistically sound design of microarray studies and experiments; and
  • biological and medical implications of genomics research.

This book is for any researcher, in academia and industry, in biology, computer science, statistics, or engineering, involved in genomic problems. It could also be used as an advanced level textbook in a course focusing on genomic signals, information processing, or genome biology.

Om forfatteren

Wei Zhang is an Associate Professor in the Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center Ilya Shmulevich is an Assistant Professor in the Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.