Complete Second Order Linear Differential Equations in Hilbert Spaces

· Operator Theory: Advances and Applications Ibhuku elingu-92 · Birkhäuser
I-Ebook
220
Amakhasi
Izilinganiso nezibuyekezo aziqinisekisiwe  Funda Kabanzi

Mayelana nale ebook

Incomplete second order linear differential equations in Banach spaces as well as first order equations have become a classical part of functional analysis. This monograph is an attempt to present a unified systematic theory of second order equations y" (t) + Ay' (t) + By (t) = 0 including well-posedness of the Cauchy problem as well as the Dirichlet and Neumann problems. Exhaustive yet clear answers to all posed questions are given. Special emphasis is placed on new surprising effects arising for complete second order equations which do not take place for first order and incomplete second order equations. For this purpose, some new results in the spectral theory of pairs of operators and the boundary behavior of integral transforms have been developed. The book serves as a self-contained introductory course and a reference book on this subject for undergraduate and post- graduate students and research mathematicians in analysis. Moreover, users will welcome having a comprehensive study of the equations at hand, and it gives insight into the theory of complete second order linear differential equations in a general context - a theory which is far from being fully understood.

Nikeza le ebook isilinganiso

Sitshele ukuthi ucabangani.

Ulwazi lokufunda

Amasmathifoni namathebulethi
Faka uhlelo lokusebenza lwe-Google Play Amabhuku lwe-Android ne-iPad/iPhone. Livunyelaniswa ngokuzenzakalela ne-akhawunti yakho liphinde likuvumele ukuthi ufunde uxhunywe ku-inthanethi noma ungaxhunyiwe noma ngabe ukuphi.
Amakhompyutha aphathekayo namakhompyutha
Ungalalela ama-audiobook athengwe ku-Google Play usebenzisa isiphequluli sewebhu sekhompuyutha yakho.
Ama-eReaders namanye amadivayisi
Ukuze ufunde kumadivayisi e-e-ink afana ne-Kobo eReaders, uzodinga ukudawuniloda ifayela futhi ulidlulisele kudivayisi yakho. Landela imiyalelo Yesikhungo Sosizo eningiliziwe ukuze udlulise amafayela kuma-eReader asekelwayo.