Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics

ยท
ยท Elsevier
เช‡-เชชเซเชธเซเชคเช•
494
เชชเซ‡เชœ
เชชเชพเชคเซเชฐ
เชฐเซ‡เชŸเชฟเช‚เช— เช…เชจเซ‡ เชฐเชฟเชตเซเชฏเซ‚ เชšเช•เชพเชธเซ‡เชฒเชพ เชจเชฅเซ€ย เชตเชงเซ เชœเชพเชฃเซ‹

เช† เช‡-เชชเซเชธเซเชคเช• เชตเชฟเชถเซ‡

Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics investigates and presents the many applications that have arisen in the last ten years using neutrosophic statistics in bioinformatics, medicine, agriculture and cognitive science. This book will be very useful to the scientific community, appealing to audiences interested in fuzzy, vague concepts from which uncertain data are collected, including academic researchers, practicing engineers and graduate students. Neutrosophic statistics is a generalization of classical statistics. In classical statistics, the data is known, formed by crisp numbers. In comparison, data in neutrosophic statistics has some indeterminacy. This data may be ambiguous, vague, imprecise, incomplete, and even unknown.

Neutrosophic statistics refers to a set of data, such that the data or a part of it are indeterminate in some degree, and to methods used to analyze the data.

  • Introduces the field of neutrosophic statistics and how it can solve problems working with indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data
  • Presents various applications of neutrosophic statistics in the fields of bioinformatics, medicine, cognitive science and agriculture
  • Provides practical examples and definitions of neutrosophic statistics in relation to the various types of indeterminacies

เชฒเซ‡เช–เช• เชตเชฟเชถเซ‡

Prof. Dr. Florentin Smarandache is a professor of mathematics at the University of New Mexico, United states. He is the founder of neutrosophy (generalization of dialectics), neutrosophic set, neutrosophic logic, neutrosophic probability and neutrosophic statistics since 1995 and has published hundreds of papers and books on multispace and multistructure, hypersoft set, degree of dependence and independence between neutrosophic components, refined neutrosophic set, neutrosophic over-under-off-set, plithogenic set, neutrosophic triplet and duplet structures, quadruple neutrosophic structures, extension of algebraic structures to NeutroAlgebras and AntiAlgebras, Dezert Smarandache Theory and so on to many peer-reviewed international journals and many books and he presented papers and plenary lectures to many international conferences around the world.

Muhammad Aslam is a full professor of statistics in the Department of Statistics, King Abdulaziz University, Jeddah, in Saudi Arabia. He has published over 500 research papers in national and international well-reputed journals such as IEEE Access, Journal of Applied Statistics, European Journal of Operation Research, Information Sciences, International Journal of Fuzzy Systems, International Journal of Advanced Manufacturer Technology, and has authored three books published by VDM, Germany, Springer, and Wiley. Professor Aslam is recipient of the Meritorious Service Award in research from NCBAE, as well as the Research Productivity Award from the Pakistan Council for Science and Technology and King Abdulaziz University Excellence Awards in scientific research. He introduced the concept of Neutrosophic Statistical Quality Control (NSQC). He is the founder of Neutrosophic Inferential Statistics (NIS) and NSQC. His areas of interest include industrial statistics, neutrosophic inferential statistics, neutrosophic statistics, neutrosophic quality control, neutrosophic applied statistics, and classical applied statistics.

เช† เช‡-เชชเซเชธเซเชคเช•เชจเซ‡ เชฐเซ‡เชŸเชฟเช‚เช— เช†เชชเซ‹

เชคเชฎเซ‡ เชถเซเช‚ เชตเชฟเชšเชพเชฐเซ‹ เช›เซ‹ เช…เชฎเชจเซ‡ เชœเชฃเชพเชตเซ‹.

เชฎเชพเชนเชฟเชคเซ€ เชตเชพเช‚เชšเชตเซ€

เชธเซเชฎเชพเชฐเซเชŸเชซเซ‹เชจ เช…เชจเซ‡ เชŸเซ…เชฌเซเชฒเซ‡เชŸ
Android เช…เชจเซ‡ iPad/iPhone เชฎเชพเชŸเซ‡ Google Play Books เชเชช เช‡เชจเซเชธเซเชŸเซ‰เชฒ เช•เชฐเซ‹. เชคเซ‡ เชคเชฎเชพเชฐเชพ เชเช•เชพเช‰เชจเซเชŸ เชธเชพเชฅเซ‡ เช‘เชŸเซ‹เชฎเซ…เชŸเชฟเช• เชฐเซ€เชคเซ‡ เชธเชฟเช‚เช• เชฅเชพเชฏ เช›เซ‡ เช…เชจเซ‡ เชคเชฎเชจเซ‡ เชœเซเชฏเชพเช‚ เชชเชฃ เชนเซ‹ เชคเซเชฏเชพเช‚ เชคเชฎเชจเซ‡ เช‘เชจเชฒเชพเช‡เชจ เช…เชฅเชตเชพ เช‘เชซเชฒเชพเช‡เชจ เชตเชพเช‚เชšเชตเชพเชจเซ€ เชฎเช‚เชœเซ‚เชฐเซ€ เช†เชชเซ‡ เช›เซ‡.
เชฒเซ…เชชเชŸเซ‰เชช เช…เชจเซ‡ เช•เชฎเซเชชเซเชฏเซเชŸเชฐ
Google Play เชชเชฐ เช–เชฐเซ€เชฆเซ‡เชฒ เช‘เชกเชฟเช“เชฌเซเช•เชจเซ‡ เชคเชฎเซ‡ เชคเชฎเชพเชฐเชพ เช•เชฎเซเชชเซเชฏเซเชŸเชฐเชจเชพ เชตเซ‡เชฌ เชฌเซเชฐเชพเช‰เชเชฐเชจเซ‹ เช‰เชชเชฏเซ‹เช— เช•เชฐเซ€เชจเซ‡ เชธเชพเช‚เชญเชณเซ€ เชถเช•เซ‹ เช›เซ‹.
eReaders เช…เชจเซ‡ เช…เชจเซเชฏ เชกเชฟเชตเชพเช‡เชธ
Kobo เช‡-เชฐเซ€เชกเชฐ เชœเซ‡เชตเชพ เช‡-เช‡เช‚เช• เชกเชฟเชตเชพเช‡เชธ เชชเชฐ เชตเชพเช‚เชšเชตเชพ เชฎเชพเชŸเซ‡, เชคเชฎเชพเชฐเซ‡ เชซเชพเช‡เชฒเชจเซ‡ เชกเชพเช‰เชจเชฒเซ‹เชก เช•เชฐเซ€เชจเซ‡ เชคเชฎเชพเชฐเชพ เชกเชฟเชตเชพเช‡เชธ เชชเชฐ เชŸเซเชฐเชพเชจเซเชธเชซเชฐ เช•เชฐเชตเชพเชจเซ€ เชœเชฐเซ‚เชฐ เชชเชกเชถเซ‡. เชธเชชเซ‹เชฐเซเชŸเซ‡เชก เช‡-เชฐเซ€เชกเชฐ เชชเชฐ เชซเชพเช‡เชฒเซ‹ เชŸเซเชฐเชพเชจเซเชธเซเชซเชฐ เช•เชฐเชตเชพ เชฎเชพเชŸเซ‡ เชธเชนเชพเชฏเชคเชพ เช•เซ‡เชจเซเชฆเซเชฐเชจเซ€ เชตเชฟเช—เชคเชตเชพเชฐ เชธเซ‚เชšเชจเชพเช“ เช…เชจเซเชธเชฐเซ‹.