Closure Spaces and Logic

·
· Mathematics and Its Applications Kitab 369 · Springer Science & Business Media
E-kitab
230
Səhifələr
Reytinqlər və rəylər doğrulanmır  Ətraflı Məlumat

Bu e-kitab haqqında

This book examines an abstract mathematical theory, placing special emphasis on results applicable to formal logic. If a theory is especially abstract, it may find a natural home within several of the more familiar branches of mathematics. This is the case with the theory of closure spaces. It might be considered part of topology, lattice theory, universal algebra or, no doubt, one of several other branches of mathematics as well. In our development we have treated it, conceptually and methodologically, as part of topology, partly because we first thought ofthe basic structure involved (closure space), as a generalization of Frechet's concept V-space. V-spaces have been used in some developments of general topology as a generalization of topological space. Indeed, when in the early '50s, one of us started thinking about closure spaces, we thought ofit as the generalization of Frechet V space which comes from not requiring the null set to be CLOSURE SPACES ANDLOGIC XlI closed(as it is in V-spaces). This generalization has an extreme advantage in connection with application to logic, since the most important closure notion in logic, deductive closure, in most cases does not generate a V-space, since the closure of the null set typically consists of the "logical truths" of the logic being examined.

Bu e-kitabı qiymətləndirin

Fikirlərinizi bizə deyin

Məlumat oxunur

Smartfonlar və planşetlər
AndroidiPad/iPhone üçün Google Play Kitablar tətbiqini quraşdırın. Bu hesabınızla avtomatik sinxronlaşır və harada olmağınızdan asılı olmayaraq onlayn və oflayn rejimdə oxumanıza imkan yaradır.
Noutbuklar və kompüterlər
Kompüterinizin veb brauzerini istifadə etməklə Google Play'də alınmış audio kitabları dinləyə bilərsiniz.
eReader'lər və digər cihazlar
Kobo eReaders kimi e-mürəkkəb cihazlarında oxumaq üçün faylı endirməli və onu cihazınıza köçürməlisiniz. Faylları dəstəklənən eReader'lərə köçürmək üçün ətraflı Yardım Mərkəzi təlimatlarını izləyin.