Classical Groups and Geometric Algebra

Fields Institute Communications Bog 39 · American Mathematical Soc.
5,0
2 anmeldelser
E-bog
169
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

''Classical groups'', named so by Hermann Weyl, are groups of matrices or quotients of matrix groups by small normal subgroups. Thus the story begins, as Weyl suggested, with ''Her All-embracing Majesty'', the general linear group $GL n(V)$ of all invertible linear transformations of a vector space $V$ over a field $F$. All further groups discussed are either subgroups of $GL n(V)$ or closely related quotient groups. Most of the classical groups consist of invertible linear transformations that respect a bilinear form having some geometric significance, e.g., a quadratic form, a symplectic form, etc. Accordingly, the author develops the required geometric notions, albeit from an algebraic point of view, as the end results should apply to vector spaces over more-or-less arbitrary fields, finite or infinite. The classical groups have proved to be important in a wide variety of venues, ranging from physics to geometry and far beyond. In recent years, they have played a prominent role in the classification of the finite simple groups. This text provides a single source for the basic facts about the classical groups and also includes the required geometrical background information from the first principles. It is intended for graduate students who have completed standard courses in linear algebra and abstract algebra. The author, L. C. Grove, is a well-known expert who has published extensively in the subject area.

Bedømmelser og anmeldelser

5,0
2 anmeldelser

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.