Classical Fourier Analysis: Edition 3

· Graduate Texts in Mathematics Libro 249 · Springer
4,0
2 reseñas
eBook
638
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

The primary goal of this book is to present the theoretical foundation of the field of Euclidean Harmonic analysis. This book contains the classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood-Paley theory. This book is mainly addressed to graduate students in mathematics. The prerequisites are satisfactory completion of courses in real and complex variables. This book is intended to present the selected topics in depth and stimulate further study.

This third edition includes a new chapter entitled "Topics on Fourier series," which includes sections on Gibbs phenomenon, summability methods and Jackson's theorem, Tauberian theorems, spherical Fourier inversion, and Fourier transforms on the line. The new chapter ties really well with the material in the existing chapter 3 "Fourier Analysis on the Torus" and will prepare the students for (the existing) chapter 4.

In addition to a new chapter, the third edition contains 1000 different corrections and improvements in the existing text, more examples and applications, new and more relevant hints for the existing exercises, about 20-30 new exercises in the existing chapters, and improved references.

Valoraciones y reseñas

4,0
2 reseñas

Acerca del autor

Loukas Grafakos is a Professor of Mathematics at the University of Missouri at Columbia.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.