Calcolo integrale

· ·
EGEA spa
E-knjiga
44
Broj stranica
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

Numerose questioni di natura finanziaria, statistica o probabilistica conducono naturalmente al calcolo integrale e spiegano quindi la necessità d’occuparsene. Dopo le operazioni di limite e di derivazione è questa la terza tra le operazioni fondamentali del cosiddetto calcolo infinitesimale. Lo sviluppo logico del capitolo è il seguente. Un esempio introduttivo relativo al calcolo di un’area guida alla definizione di integrale secondo Riemann. Si affronta poi uno dei punti importanti della teoria, cioè la connessione col calcolo differenziale. Il risultato è espresso dal primo teorema fondamentale, che fornisce anche la formula di calcolo degli integrali per variazione d’una primitiva. S’introduce l’integrale indefinito e si descrivono i principali metodi di calcolo. La definizione d’integrale definito è estesa a funzioni non limitate e a intervalli non limitati. Ciò risulta particolarmente importante per le applicazioni alla statistica e al calcolo delle probabilità.

O autoru

Lorenzo Peccati is Full Professor of Mathematics at Bocconi University in Milan, he is a specialist in Financial and Business Mathematics.

Sandro Salsa is Full Professor of Mathematical Analysis at the Politecnico di Milano, Milan, Italy.

Annamaria Squellati was formerly Lecturer of Mathematics at the Università Bocconi, Milan, Italy.

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.