Branching Process Models of Cancer

· Mathematical Biosciences Institute Lecture Series Livro 1 · Springer
E-book
63
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

These notes originated as part of a lecture series on Stochastics in Biological Systems at the Mathematical Biosciences Institute in Ohio, USA. In this contribution the author uses multitype branching processes with mutation to model cancer. With cancer progression, resistance to therapy, the time of the first type $k$ mutation, and $\sigma_k$, the time of the first type $k$ mutation that founds a family line that does not die out, as well as the growth of the number of type $k$ cells. The last three sections apply these results to metastasis, ovarian cancer, and tumor heterogeneity. Even though martingales and stable laws are mentioned, these notes with examples and applications should be accessible to students and researchers who are familiar with Poisson processes and continuous time Markov chains.

Richard Durrett is Professor of Mathematics at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology, ecology, genetics, and most recently cancer.

Sobre o autor

Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.