Branching Process Models of Cancer

· Mathematical Biosciences Institute Lecture Series Boek 1 · Springer
E-boek
63
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

These notes originated as part of a lecture series on Stochastics in Biological Systems at the Mathematical Biosciences Institute in Ohio, USA. In this contribution the author uses multitype branching processes with mutation to model cancer. With cancer progression, resistance to therapy, the time of the first type $k$ mutation, and $\sigma_k$, the time of the first type $k$ mutation that founds a family line that does not die out, as well as the growth of the number of type $k$ cells. The last three sections apply these results to metastasis, ovarian cancer, and tumor heterogeneity. Even though martingales and stable laws are mentioned, these notes with examples and applications should be accessible to students and researchers who are familiar with Poisson processes and continuous time Markov chains.

Richard Durrett is Professor of Mathematics at Duke University, USA. He is the author of 8 books, over 200 journal articles, and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology, ecology, genetics, and most recently cancer.

Over de auteur

Richard Durrett is mathematics professor at Duke University, USA. He is the author of 8 books, over 200 journal articles and has supervised more than 40 Ph.D. students. Most of his current research concerns the applications of probability to biology: ecology, genetics, and most recently cancer.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.