Braid Foliations in Low-Dimensional Topology

·
· American Mathematical Soc.
E-Book
304
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

This book is a self-contained introduction to braid foliation techniques, which is a theory developed to study knots, links and surfaces in general 3-manifolds and more specifically in contact 3-manifolds. With style and content accessible to beginning students interested in geometric topology, each chapter centers around a key theorem or theorems. The particular braid foliation techniques needed to prove these theorems are introduced in parallel, so that the reader has an immediate "take-home" for the techniques involved.

The reader will learn that braid foliations provide a flexible toolbox capable of proving classical results such as Markov's theorem for closed braids and the transverse Markov theorem for transverse links, as well as recent results such as the generalized Jones conjecture for closed braids and the Legendrian grid number conjecture for Legendrian links. Connections are also made between the Dehornoy ordering of the braid groups and braid foliations on surfaces.

All of this is accomplished with techniques for which only mild prerequisites are required, such as an introductory knowledge of knot theory and differential geometry. The visual flavor of the arguments contained in the book is supported by over 200 figures.

Autoren-Profil

 Douglas J. LaFountain: Western Illinois University, Macomb, IL,
William W. Menasco: University at Buffalo, Buffalo, NY

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.