Braid Foliations in Low-Dimensional Topology

·
· American Mathematical Soc.
E-knjiga
304
Broj stranica
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

This book is a self-contained introduction to braid foliation techniques, which is a theory developed to study knots, links and surfaces in general 3-manifolds and more specifically in contact 3-manifolds. With style and content accessible to beginning students interested in geometric topology, each chapter centers around a key theorem or theorems. The particular braid foliation techniques needed to prove these theorems are introduced in parallel, so that the reader has an immediate "take-home" for the techniques involved.

The reader will learn that braid foliations provide a flexible toolbox capable of proving classical results such as Markov's theorem for closed braids and the transverse Markov theorem for transverse links, as well as recent results such as the generalized Jones conjecture for closed braids and the Legendrian grid number conjecture for Legendrian links. Connections are also made between the Dehornoy ordering of the braid groups and braid foliations on surfaces.

All of this is accomplished with techniques for which only mild prerequisites are required, such as an introductory knowledge of knot theory and differential geometry. The visual flavor of the arguments contained in the book is supported by over 200 figures.

O autoru

 Douglas J. LaFountain: Western Illinois University, Macomb, IL,
William W. Menasco: University at Buffalo, Buffalo, NY

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.