Bounded Cohomology and Simplicial Volume

· · ·
· London Mathematical Society Lecture Note Series Boek 479 · Cambridge University Press
E-boek
172
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Since their introduction by Gromov in the 1980s, the study of bounded cohomology and simplicial volume has developed into an active field connected to geometry and group theory. This monograph, arising from a learning seminar for young researchers working in the area, provides a collection of different perspectives on the subject, both classical and recent. The book's introduction presents the main definitions of the theories of bounded cohomology and simplicial volume, outlines their history, and explains their principal motivations and applications. Individual chapters then present different aspects of the theory, with a focus on examples. Detailed references to foundational papers and the latest research are given for readers wishing to dig deeper. The prerequisites are only basic knowledge of classical algebraic topology and of group theory, and the presentations are gentle and informal in order to be accessible to beginning graduate students wanting to enter this lively and topical field.

Meer oor die skrywer

Caterina Campagnolo is a postdoctoral researcher now working at UAM Madrid.

Francesco Fournier-Facio is PhD student at ETH Zürich.

Nicolaus Heuer received his PhD from the University of Oxford.

Marco Moraschini is a type A fixed-termed Researcher at University of Bologna. He was previously a Postdoctoral Researcher at University of Regensburg.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.