Bilagebraic Structures and Smarandache Bialgebraic Structures

· Infinite Study
e-Buku
270
Halaman
Layak
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

Generally the study of algebraic structures deals with the concepts like groups, semigroups, groupoids, loops, rings, near-rings, semirings, and vector spaces. The study of bialgebraic structures deals with the study of bistructures like bigroups, biloops, bigroupoids, bisemigroups, birings, binear-rings, bisemirings and bivector spaces. A complete study of these bialgebraic structures and their Smarandache analogues is carried out in this book. For examples: A set (S, +, *) with two binary operations ?+? and '*' is called a bisemigroup of type II if there exists two proper subsets S1 and S2 of S such that S = S1 U S2 and(S1, +) is a semigroup.(S2, *) is a semigroup. Let (S, +, *) be a bisemigroup. We call (S, +, *) a Smarandache bisemigroup (S-bisemigroup) if S has a proper subset P such that (P, +, *) is a bigroup under the operations of S. Let (L, +, *) be a non empty set with two binary operations. L is said to be a biloop if L has two nonempty finite proper subsets L1 and L2 of L such that L = L1 U L2 and(L1, +) is a loop, (L2, *) is a loop or a group. Let (L, +, *) be a biloop we call L a Smarandache biloop (S-biloop) if L has a proper subset P which is a bigroup. Let (G, +, *) be a non-empty set. We call G a bigroupoid if G = G1 U G2 and satisfies the following:(G1 , +) is a groupoid (i.e. the operation + is non-associative), (G2, *) is a semigroup. Let (G, +, *) be a non-empty set with G = G1 U G2, we call G a Smarandache bigroupoid (S-bigroupoid) if G1 and G2 are distinct proper subsets of G such that G = G1 U G2 (neither G1 nor G2 are included in each other), (G1, +) is a S-groupoid.(G2, *) is a S-semigroup.A nonempty set (R, +, *) with two binary operations ?+? and '*' is said to be a biring if R = R1 U R2 where R1 and R2 are proper subsets of R and (R1, +, *) is a ring, (R2, +, ?) is a ring.A Smarandache biring (S-biring) (R, +, *) is a non-empty set with two binary operations ?+? and '*' such that R = R1 U R2 where R1 and R2 are proper subsets of R and(R1, +, *) is a S-ring, (R2, +, *) is a S-ring.

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.