Aufgabensammlung zur Infinitesimalrechnung: Band III: Integralrechnung auf dem Gebiete mehrerer Variablen

· Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften 56. kniha · Springer-Verlag
E‑kniha
398
Počet strán
Hodnotenia a recenzie nie sú overené  Ďalšie informácie

Táto e‑kniha

Mit diesem Band wird nunmehr meine Aufgabensammlung abgeschlossen. Es gilt dafür das im Vorwort zum Band 11 Gesagte. Bei der Herstellung des Manuskripts wurde ich in freundlicher und sach gemäßer Weise von Frau Prof. R. Jeltsch-Fricker und bei den Korrekturen von Herrn cand. math. K. Langer wirksam unterstützt. Ihnen beiden, sowie dem Verlag, der auch diesmal freundliche Geduld und Ausdauer bewies, gilt mein aufrichtiger Dank. A. Ostrowski ABKÜRZUNGEN Fig. Punkt AbI. Ableitung Figur Pkt. Beh. Behauptung, Fkt. Funktion pos. positiv behaupten GI. Gleichung Stet. Stetigkeit, stetig Bew. Beweis, Int. Integral, u. und beweisen integrieren Ungl. Ungleichung bzw. beziehungsweise Konv. Konvergenz, v. von d. der, die, das konvergieren v. Ind. vollständige d. h. das heißt neg. negativ Induktion Div. Divergenz, m. man vgl. vergleiche divergieren OBdA Ohne Beschr- e. ein, eine, eines kung der All- f. für meinheit {laquo} ist das Symbol für Majorisierung. Za. {laquo}Zb. bedeutet, daß für alle in Frage kommenden v: la. l;{sect}b. gilt. AcB bedeutet: A ist eine Untermenge von B; AEB bedeutet: A ist ein Element der Menge B. Entsprechend ist die Bedeutung von :J, 3. A:=B bedeutet: A ist dfiniert als B; A=:B bedeutet: A soll mit B bezeichnet werden. AU B ist die Vereinigungsmenge von A und B. /\ bedeutet: sowohl als auch; v bedeutet: oder. [al bedeutet die ganze Zahl n mit a-l.

Ohodnoťte túto elektronickú knihu

Povedzte nám svoj názor.

Informácie o dostupnosti

Smartfóny a tablety
Nainštalujte si aplikáciu Knihy Google Play pre AndroidiPad/iPhone. Automaticky sa synchronizuje s vaším účtom a umožňuje čítať online aj offline, nech už ste kdekoľvek.
Laptopy a počítače
Audioknihy zakúpené v službe Google Play môžete počúvať prostredníctvom webového prehliadača v počítači.
Čítačky elektronických kníh a ďalšie zariadenia
Ak chcete tento obsah čítať v zariadeniach využívajúcich elektronický atrament, ako sú čítačky e‑kníh Kobo, musíte stiahnuť príslušný súbor a preniesť ho do svojho zariadenia. Pri prenose súborov do podporovaných čítačiek e‑kníh postupujte podľa podrobných pokynov v centre pomoci.