Aufgabensammlung zur Infinitesimalrechnung: Band III: Integralrechnung auf dem Gebiete mehrerer Variablen

· Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften Kirja 56 · Springer-Verlag
E-kirja
398
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

Mit diesem Band wird nunmehr meine Aufgabensammlung abgeschlossen. Es gilt dafür das im Vorwort zum Band 11 Gesagte. Bei der Herstellung des Manuskripts wurde ich in freundlicher und sach gemäßer Weise von Frau Prof. R. Jeltsch-Fricker und bei den Korrekturen von Herrn cand. math. K. Langer wirksam unterstützt. Ihnen beiden, sowie dem Verlag, der auch diesmal freundliche Geduld und Ausdauer bewies, gilt mein aufrichtiger Dank. A. Ostrowski ABKÜRZUNGEN Fig. Punkt AbI. Ableitung Figur Pkt. Beh. Behauptung, Fkt. Funktion pos. positiv behaupten GI. Gleichung Stet. Stetigkeit, stetig Bew. Beweis, Int. Integral, u. und beweisen integrieren Ungl. Ungleichung bzw. beziehungsweise Konv. Konvergenz, v. von d. der, die, das konvergieren v. Ind. vollständige d. h. das heißt neg. negativ Induktion Div. Divergenz, m. man vgl. vergleiche divergieren OBdA Ohne Beschr- e. ein, eine, eines kung der All- f. für meinheit {laquo} ist das Symbol für Majorisierung. Za. {laquo}Zb. bedeutet, daß für alle in Frage kommenden v: la. l;{sect}b. gilt. AcB bedeutet: A ist eine Untermenge von B; AEB bedeutet: A ist ein Element der Menge B. Entsprechend ist die Bedeutung von :J, 3. A:=B bedeutet: A ist dfiniert als B; A=:B bedeutet: A soll mit B bezeichnet werden. AU B ist die Vereinigungsmenge von A und B. /\ bedeutet: sowohl als auch; v bedeutet: oder. [al bedeutet die ganze Zahl n mit a-l.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.