Assessing Inequality

¡ SAGE Publications
āĻ‡-āĻŦā§āĻ•
160
āĻĒā§ƒāĻˇā§āĻ āĻž
āĻ‰āĻĒāĻ¯ā§āĻ•ā§āĻ¤
āĻ°ā§‡āĻŸāĻŋāĻ‚ āĻ“ āĻ°āĻŋāĻ­āĻŋāĻ‰ āĻ¯āĻžāĻšāĻžāĻ‡ āĻ•āĻ°āĻž āĻšā§ŸāĻ¨āĻŋ  āĻ†āĻ°āĻ“ āĻœāĻžāĻ¨ā§āĻ¨

āĻāĻ‡ āĻ‡-āĻŦā§āĻ•ā§‡āĻ° āĻŦāĻŋāĻˇā§Ÿā§‡

Providing basic foundations for measuring inequality
from the perspective of distributional properties

This monograpg reviews a set of widely used summary inequality measures, and the lesser known relative distribution method provides the basic rationale behind each measure and discusses their interconnections. It also introduces model-based decomposition of inequality over time using quantile regression. This approach enables researchers to estimate two different contributions to changes in inequality between two time points.

Key Features

  • Clear statistical explanations provide fundamental statistical basis for understanding the new modeling framework
  • Straightforward empirical examples reinforce statistical knowledge and ready-to-use procedures
  • Multiple approaches to assessing inequality are introduced by starting with the basic distributional property and providing connections among approaches

This supplementary text is appropriate for any graduate-level, intermediate, or advanced statistics course across the social and behavioral sciences, as well as individual researchers.

āĻ˛ā§‡āĻ–āĻ• āĻ¸āĻŽā§āĻĒāĻ°ā§āĻ•ā§‡

Lingxin Hao is a professor of sociology at Johns Hopkins University. Her specialties include quantitative methodology, social inequality, sociology of education, migration, and family and public policy. She is the lead author of two QASS monographs Quantile Regression and Assessing Inequality. Her research has appeared in the Sociological Methodology, Sociological Methods and Research, American Journal of Sociology, Demography, Social Forces, Sociology of Education, and Child Development, among others.

Daniel Q. Naiman (PhD, Mathematics, 1982, University of Illinois at Urbana-Champaign) is Professor and Chair of the Applied Mathematics and Statistics at the Johns Hopkins University. He was elected as a Fellow of the Institute of Mathematical Statistics in 1997, and was an Erskine Fellow at the University of Canterbury in 2005. Much of his mathematical research has been focused on geometric and computational methods for multiple testing. He has collaborated on papers applying statistics in a variety of areas: bioinformatics, econometrics, environmental health, genetics, hydrology, and microbiology. His articles have appeared in various journals including Annals of Statistics, Bioinformatics, Biometrika, Human Heredity, Journal of Multivariate Analysis, Journal of the American Statistical Association, and Science.

āĻ‡-āĻŦā§āĻ•ā§‡ āĻ°ā§‡āĻŸāĻŋāĻ‚ āĻĻāĻŋāĻ¨

āĻ†āĻĒāĻ¨āĻžāĻ° āĻŽāĻ¤āĻžāĻŽāĻ¤ āĻœāĻžāĻ¨āĻžāĻ¨āĨ¤

āĻĒāĻ āĻ¨ āĻ¤āĻĨā§āĻ¯

āĻ¸ā§āĻŽāĻžāĻ°ā§āĻŸāĻĢā§‹āĻ¨ āĻāĻŦāĻ‚ āĻŸā§āĻ¯āĻžāĻŦāĻ˛ā§‡āĻŸ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāĻ° āĻœāĻ¨ā§āĻ¯ Google Play āĻŦāĻ‡ āĻ…ā§āĻ¯āĻžāĻĒ āĻ‡āĻ¨āĻ¸ā§āĻŸāĻ˛ āĻ•āĻ°ā§āĻ¨āĨ¤ āĻāĻŸāĻŋ āĻ†āĻĒāĻ¨āĻžāĻ° āĻ…ā§āĻ¯āĻžāĻ•āĻžāĻ‰āĻ¨ā§āĻŸā§‡āĻ° āĻ¸āĻžāĻĨā§‡ āĻ…āĻŸā§‹āĻŽā§‡āĻŸāĻŋāĻ• āĻ¸āĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āĻ†āĻĒāĻ¨āĻŋ āĻ…āĻ¨āĻ˛āĻžāĻ‡āĻ¨ āĻŦāĻž āĻ…āĻĢāĻ˛āĻžāĻ‡āĻ¨ āĻ¯āĻžāĻ‡ āĻĨāĻžāĻ•ā§āĻ¨ āĻ¨āĻž āĻ•ā§‡āĻ¨ āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻĒā§œāĻ¤ā§‡ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āĻ¯āĻžāĻĒāĻŸāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°
Google Play āĻĨā§‡āĻ•ā§‡ āĻ•ā§‡āĻ¨āĻž āĻ…āĻĄāĻŋāĻ“āĻŦā§āĻ• āĻ†āĻĒāĻ¨āĻŋ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°ā§‡āĻ° āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āĻ°āĻžāĻ‰āĻœāĻžāĻ°ā§‡ āĻļā§āĻ¨āĻ¤ā§‡ āĻĒāĻžāĻ°ā§‡āĻ¨āĨ¤
eReader āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āĻ¯āĻžāĻ¨ā§āĻ¯ āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸
Kobo eReaders-āĻāĻ° āĻŽāĻ¤ā§‹ e-ink āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸ā§‡ āĻĒāĻĄāĻŧāĻ¤ā§‡, āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻāĻ•āĻŸāĻŋ āĻĢāĻžāĻ‡āĻ˛ āĻĄāĻžāĻ‰āĻ¨āĻ˛ā§‹āĻĄ āĻ“ āĻ†āĻĒāĻ¨āĻžāĻ° āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸ā§‡ āĻŸā§āĻ°āĻžāĻ¨ā§āĻ¸āĻĢāĻžāĻ° āĻ•āĻ°āĻ¤ā§‡ āĻšāĻŦā§‡āĨ¤ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ°āĻ•āĻžāĻ°ā§€āĻ° āĻ‰āĻĻā§āĻĻā§‡āĻļā§āĻ¯ā§‡ āĻ¤ā§ˆāĻ°āĻŋ āĻ¸āĻšāĻžā§ŸāĻ¤āĻž āĻ•ā§‡āĻ¨ā§āĻĻā§āĻ°āĻ¤ā§‡ āĻĻā§‡āĻ“ā§ŸāĻž āĻ¨āĻŋāĻ°ā§āĻĻā§‡āĻļāĻžāĻŦāĻ˛ā§€ āĻ…āĻ¨ā§āĻ¸āĻ°āĻŖ āĻ•āĻ°ā§‡ āĻ¯ā§‡āĻ¸āĻŦ eReader-āĻ āĻĢāĻžāĻ‡āĻ˛ āĻĒāĻĄāĻŧāĻž āĻ¯āĻžāĻŦā§‡ āĻ¸ā§‡āĻ–āĻžāĻ¨ā§‡ āĻŸā§āĻ°āĻžāĻ¨ā§āĻ¸āĻĢāĻžāĻ° āĻ•āĻ°ā§āĻ¨āĨ¤