Approximation Methods in Optimization of Nonlinear Systems

¡
¡ De Gruyter Series in Nonlinear Analysis and Applications āĻ•āĻŋāĻ¤āĻžāĻĒ 32 ¡ Walter de Gruyter GmbH & Co KG
āĻ‡āĻŦā§āĻ•
351
āĻĒā§ƒāĻˇā§āĻ āĻž
āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ†ā§°ā§ āĻĒā§°ā§āĻ¯āĻžāĻ˛ā§‹āĻšāĻ¨āĻž āĻ¸āĻ¤ā§āĻ¯āĻžāĻĒāĻ¨ āĻ•ā§°āĻž āĻšā§‹ā§ąāĻž āĻ¨āĻžāĻ‡  āĻ…āĻ§āĻŋāĻ• āĻœāĻžāĻ¨āĻ•

āĻāĻ‡ āĻ‡āĻŦā§āĻ•āĻ–āĻ¨ā§° āĻŦāĻŋāĻˇā§Ÿā§‡

The monograph addresses some problems particularly with regard to ill-posedness of boundary value problems and problems where we cannot expect to have uniqueness of their solutions in the standard functional spaces. Bringing original and previous results together, it tackles computational challenges by exploiting methods of approximation and asymptotic analysis and harnessing differences between optimal control problems and their underlying PDEs

āĻ˛āĻŋāĻ–āĻ•ā§° āĻŦāĻŋāĻˇāĻ¯āĻŧā§‡

Peter I. Kogut, Dnipro, Ukraine

Ohla P. Kupenko, Dnipro, Ukraine

āĻāĻ‡ āĻ‡āĻŦā§āĻ•āĻ–āĻ¨āĻ• āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ•ā§°āĻ•

āĻ†āĻŽāĻžāĻ• āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻŽāĻ¤āĻžāĻŽāĻ¤ āĻœāĻ¨āĻžāĻ“āĻ•āĨ¤

āĻĒāĻĸāĻŧāĻžā§° āĻ¨āĻŋāĻ°ā§āĻĻā§‡āĻļāĻžā§ąāĻ˛ā§€

āĻ¸ā§āĻŽāĻžā§°ā§āĻŸāĻĢ’āĻ¨ āĻ†ā§°ā§ āĻŸā§‡āĻŦāĻ˛ā§‡āĻŸ
Android āĻ†ā§°ā§ iPad/iPhoneā§° āĻŦāĻžāĻŦā§‡ Google Play Books āĻāĻĒāĻŸā§‹ āĻ‡āĻ¨āĻˇā§āĻŸāĻ˛ āĻ•ā§°āĻ•āĨ¤ āĻ‡ āĻ¸ā§āĻŦāĻ¯āĻŧāĻ‚āĻ•ā§āĻ°āĻŋāĻ¯āĻŧāĻ­āĻžā§ąā§‡ āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻāĻ•āĻžāĻ‰āĻŖā§āĻŸā§° āĻ¸ā§ˆāĻ¤ā§‡ āĻ›āĻŋāĻ‚āĻ• āĻšāĻ¯āĻŧ āĻ†ā§°ā§ āĻ†āĻĒā§āĻ¨āĻŋ āĻ¯'āĻ¤ā§‡ āĻ¨āĻžāĻĨāĻžāĻ•āĻ• āĻ¤'āĻ¤ā§‡āĻ‡ āĻ•ā§‹āĻ¨ā§‹ āĻ…āĻĄāĻŋāĻ…'āĻŦā§āĻ• āĻ…āĻ¨āĻ˛āĻžāĻ‡āĻ¨ āĻŦāĻž āĻ…āĻĢāĻ˛āĻžāĻ‡āĻ¨āĻ¤ āĻļā§āĻ¨āĻŋāĻŦāĻ˛ā§ˆ āĻ¸ā§āĻŦāĻŋāĻ§āĻž āĻĻāĻŋāĻ¯āĻŧā§‡āĨ¤
āĻ˛ā§‡āĻĒāĻŸāĻĒ āĻ†ā§°ā§ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžā§°
āĻ†āĻĒā§āĻ¨āĻŋ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āĻ°āĻžāĻ‰āĻœāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻ•ā§°āĻŋ Google PlayāĻ¤ āĻ•āĻŋāĻ¨āĻž āĻ…āĻĄāĻŋāĻ…'āĻŦā§āĻ•āĻ¸āĻŽā§‚āĻš āĻļā§āĻ¨āĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āĻ‡-ā§°ā§€āĻĄāĻžā§° āĻ†ā§°ā§ āĻ…āĻ¨ā§āĻ¯ āĻĄāĻŋāĻ­āĻžāĻ‡āĻš
Kobo eReadersā§° āĻĻā§°ā§‡ āĻ‡-āĻšāĻŋā§ŸāĻžāĻāĻšā§€ā§° āĻĄāĻŋāĻ­āĻžāĻ‡āĻšāĻ¸āĻŽā§‚āĻšāĻ¤ āĻĒā§āĻŋāĻŦāĻ˛ā§ˆ, āĻ†āĻĒā§āĻ¨āĻŋ āĻāĻŸāĻž āĻĢāĻžāĻ‡āĻ˛ āĻĄāĻžāĻ‰āĻ¨āĻ˛â€™āĻĄ āĻ•ā§°āĻŋ āĻ¸ā§‡āĻ‡āĻŸā§‹ āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻĄāĻŋāĻ­āĻžāĻ‡āĻšāĻ˛ā§ˆ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤ā§°āĻŖ āĻ•ā§°āĻŋāĻŦ āĻ˛āĻžāĻ—āĻŋāĻŦāĨ¤ āĻ¸āĻŽā§°ā§āĻĨāĻŋāĻ¤ āĻ‡-ā§°āĻŋāĻĄāĻžā§°āĻ˛ā§ˆ āĻĢāĻžāĻ‡āĻ˛āĻŸā§‹ āĻ•ā§‡āĻ¨ā§‡āĻ•ā§ˆ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤ā§° āĻ•ā§°āĻŋāĻŦ āĻœāĻžāĻ¨āĻŋāĻŦāĻ˛ā§ˆ āĻ¸āĻšāĻžāĻ¯āĻŧ āĻ•ā§‡āĻ¨ā§āĻĻā§ā§°āĻ¤ āĻĨāĻ•āĻž āĻ¸āĻŦāĻŋāĻļā§‡āĻˇ āĻ¨āĻŋā§°ā§āĻĻā§‡āĻļāĻžā§ąāĻ˛ā§€ āĻšāĻžāĻ“āĻ•āĨ¤