Approaching (Almost) Any Machine Learning Problem

· Abhishek Thakur
4,6
27 recensións
Libro electrónico
300
Páxinas
Apto
As valoracións e as recensións non están verificadas  Máis información

Acerca deste libro electrónico

This is not a traditional book.

The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option.

This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along.


Table of contents:

- Setting up your working environment

- Supervised vs unsupervised learning

- Cross-validation

- Evaluation metrics

- Arranging machine learning projects

- Approaching categorical variables

- Feature engineering

- Feature selection

- Hyperparameter optimization

- Approaching image classification & segmentation

- Approaching text classification/regression

- Approaching ensembling and stacking

- Approaching reproducible code & model serving


There are no sub-headings. Important terms are written in bold.

I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions

And Subscribe to my youtube channel: https://bit.ly/abhitubesub

Valoracións e recensións

4,6
27 recensións

Acerca do autor

Abhishek Thakur is a data scientist and world's first 4x grandmaster on Kaggle. His passion lies in solving difficult world problems through data science. Abhishek did his Bachelors in Electronics Engineering from India and moved to Germany for pursuing MSc from University of Bonn, Germany with a focus on image processing and computer vision. He dropped out of PhD in 2015 and since then has been working in industries.

Valora este libro electrónico

Dános a túa opinión.

Información de lectura

Smartphones e tabletas
Instala a aplicación Google Play Libros para Android e iPad/iPhone. Sincronízase automaticamente coa túa conta e permíteche ler contido en liña ou sen conexión desde calquera lugar.
Portátiles e ordenadores de escritorio
Podes escoitar os audiolibros comprados en Google Play a través do navegador web do ordenador.
Lectores de libros electrónicos e outros dispositivos
Para ler contido en dispositivos de tinta electrónica, como os lectores de libros electrónicos Kobo, é necesario descargar un ficheiro e transferilo ao dispositivo. Sigue as instrucións detalladas do Centro de Axuda para transferir ficheiros a lectores electrónicos admitidos.