Applying Generalized Linear Models

· Springer Science & Business Media
I-Ebook
256
Amakhasi
Izilinganiso nezibuyekezo aziqinisekisiwe  Funda Kabanzi

Mayelana nale ebook

Applying Generalized Linear Models describes how generalized linear modelling procedures can be used for statistical modelling in many different fields, without becoming lost in problems of statistical inference. Many students, even in relatively advanced statistics courses, do not have an overview whereby they can see that the three areas - linear normal, categorical, and survival models - have much in common. The author shows the unity of many of the commonly used models and provides the reader with a taste of many different areas, such as survival models, time series, and spatial analysis. This book should appeal to applied statisticians and to scientists with a basic grounding in modern statistics. With the many exercises included at the ends of chapters, it will be an excellent text for teaching the fundamental uses of statistical modelling. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, and should be familiar at least with the analysis of the simpler normal linear models, regression and ANOVA. The author is professor in the biostatistics department at Limburgs University, Diepenbeek, in the social science department at the University of Liège, and in medical statistics at DeMontfort University, Leicester. He is the author of nine other books.

Nikeza le ebook isilinganiso

Sitshele ukuthi ucabangani.

Ulwazi lokufunda

Amasmathifoni namathebulethi
Faka uhlelo lokusebenza lwe-Google Play Amabhuku lwe-Android ne-iPad/iPhone. Livunyelaniswa ngokuzenzakalela ne-akhawunti yakho liphinde likuvumele ukuthi ufunde uxhunywe ku-inthanethi noma ungaxhunyiwe noma ngabe ukuphi.
Amakhompyutha aphathekayo namakhompyutha
Ungalalela ama-audiobook athengwe ku-Google Play usebenzisa isiphequluli sewebhu sekhompuyutha yakho.
Ama-eReaders namanye amadivayisi
Ukuze ufunde kumadivayisi e-e-ink afana ne-Kobo eReaders, uzodinga ukudawuniloda ifayela futhi ulidlulisele kudivayisi yakho. Landela imiyalelo Yesikhungo Sosizo eningiliziwe ukuze udlulise amafayela kuma-eReader asekelwayo.