„Applied Mathematical Sciences“: „Partial Differential Equations II“

· Applied Mathematical Sciences Leidimo Nr. 116 · Springer Science & Business Media
El. knyga
529
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

Partial differential equations is a many-faceted subject. Created to describe the mechanical behavior of objects such as vibrating strings and blowing winds, it has developed into a body of material that interacts with many branches of math ematics, such as differential geometry, complex analysis, and harmonic analysis, as weil as a ubiquitous factor in the description and elucidation of problems in mathematical physics. This work is intended to provide a course of study of some of the major aspects of PDE. It is addressed to readers with a background in the basic introductory grad uate mathematics courses in American universities: elementary real and complex analysis, differential geometry, and measure theory. Chapter 1 provides background material on the theory of ordinary differential equations (ODE). This includes both very basic material-on topics such as the existence and uniqueness of solutions to ODE and explicit solutions to equations with constant coefficients and relations to linear algebra-and more sophisticated results-on flows generated by vector fields, connections with differential geom etry, the calculus of differential forms, stationary action principles in mechanics, and their relation to Hamiltonian systems. We discuss equations of relativistic motion as weIl as equations of c1assical Newtonian mechanics. There are also applications to topological results, such as degree theory, the Brouwer fixed-point theorem, and the Jordan-Brouwer separation theorem. In this chapter we also treat scalar first-order PDE, via Hamilton-Jacobi theory.

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.