Applied Mathematical Sciences: Linear Integral Equations

· Applied Mathematical Sciences Số phát hành82 · Springer Science & Business Media
Sách điện tử
367
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

In the ten years since the first edition of this book appeared, integral equations and integral operators have revealed more of their mathematical beauty and power to me. Therefore, I am pleased to have the opportunity to share some of these new insights with the readers of this book. As in the first edition, the main motivation is to present the fundamental theory of integral equations, some of their main applications, and the basic concepts of their numerical solution in a single volume. This is done from my own perspective of integral equations; I have made no attempt to include all of the recent developments. In addition to making corrections and adjustments throughout the text and updating the references, the following topics have been added: In Sec tion 4.3 the presentation of the Fredholm alternative in dual systems has been slightly simplified and in Section 5.3 the short presentation on the index of operators has been extended. The treatment of boundary value problems in potential theory now includes proofs of the jump relations for single-and double-layer potentials in Section 6.3 and the solution of the Dirichlet problem for the exterior of an arc in two dimensions (Section 7.6). The numerical analysis of the boundary integral equations in Sobolev space settings has been extended for both integral equations of the first kind in Section 13.4 and integral equations of the second kind in Section 12.4.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.