Applied Mathematical Sciences: Linear Integral Equations

· Applied Mathematical Sciences Edisi #82 · Springer Science & Business Media
eBook
367
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

In the ten years since the first edition of this book appeared, integral equations and integral operators have revealed more of their mathematical beauty and power to me. Therefore, I am pleased to have the opportunity to share some of these new insights with the readers of this book. As in the first edition, the main motivation is to present the fundamental theory of integral equations, some of their main applications, and the basic concepts of their numerical solution in a single volume. This is done from my own perspective of integral equations; I have made no attempt to include all of the recent developments. In addition to making corrections and adjustments throughout the text and updating the references, the following topics have been added: In Sec tion 4.3 the presentation of the Fredholm alternative in dual systems has been slightly simplified and in Section 5.3 the short presentation on the index of operators has been extended. The treatment of boundary value problems in potential theory now includes proofs of the jump relations for single-and double-layer potentials in Section 6.3 and the solution of the Dirichlet problem for the exterior of an arc in two dimensions (Section 7.6). The numerical analysis of the boundary integral equations in Sobolev space settings has been extended for both integral equations of the first kind in Section 13.4 and integral equations of the second kind in Section 12.4.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.